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Noise and photon statistics

Thinking of light as an electromagnetic wave provides a solid foundation for modeling diffrac-
tion, interference, polarization, and for using Fourier analysis. It even works well for correla-
tion, as demonstrated profoundly in the experiments and theory of Hanbury Brown. [23, 24]
However, perhaps more fundmentally we think of light as a photon with no charge or mass,
traveling at speed c, carrying an energy E = hf , and possessing an integer spin of h̄. This
framework is equally effective for discussing the topics we have addressed, but in a dif-
ferent formalism yielding the same results in the classical limit. However when it comes
to very weak signals and detection through the photoelectric effect, we count single pho-
tons discretely, and time their arrival precisely, while in the same experiment sort them by
“wavelength”, i.e. energy, and “polarization”, i.e. spin. A common problem that arises is
to describe the statistics of photons and the resultant photoelectrons, and to understand the
response of devices that detect them and are used to form images of a scene in which spatial
direction, arrival time, color and measurement uncertainty are important.

Fried [37] addressed this issue directly by considering the statistics of photoelectrons
based on a conventional assumption that photons obey Poisson statistics. Previously we
have used the Central Limit Theorem to invoke a Gaussian distribution to describe the
statistics of light from fluctuations, and these two approaches are related but not the same.
There is an intrinsic statistical character of light from thermal sources, and there is also
a statistical character imposed on a signal by processes either in the source, the medium
between it and the detector, or the detector itself. Indeed, the analysis of the detector
statistics led Fried to look closely at how efficiency in the detector affected the noise in the
photoelectron signal. Here we will ask fundamentally what is the best statistical distribution
to use to describe light from a thermal source, review Fried’s analysis of the signal-to-noise
ratio, and describe a method of determing the properties of a detector from a measurement
of the noise in the photon signal it produces.

Poisson distribution

The starting point is the probability distribution of finding n photons in a measurement
when the average number over many measurements is 〈n〉. Following Fried we use the
Poisson distribution

P (n; 〈n〉) =
〈n〉n
n!

exp(−〈n〉) . (152)

Fox [38] offers a justification that also aids understanding the limitations of the Poisson
distribution. He considers a coherent beam of light with a steady flux, and divides a length
of it containing 〈n〉 photons into N segments. The probability of finding a photon within
one of these parts is p = 〈n〉/N , and when N is large enough the chance of finding more than
one photon there is negligible compared to the chance of finding only one. We test each of
the N bins to see if there is a photon in it. The probability of finding n bins with a photon
and (N − n) with none is probabilityh of of getting success in n out of N trials. That is, it
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is the binomial distribution

P (n;N) =
N !

n!(N − n)!
pn (1− p)N−n (153)

Substituting for p we have

P (n;N) =
N !

n!(N − n)!
(
〈n〉
N

)n (1− 〈n〉
N

)N−n (154)

To assure that there is only one photon in a bin we factor out the N terms and take the
limit N →∞ of

P (n;N) =
1

n!

N !

(N − n)!Nn
〈n〉n (1− 〈n〉

N
)N−n (155)

The fraction in the multiplier
1

n!

N !

(N − n)!Nn

is found by considering its logarithm

ln(
1

n!

N !

(N − n)!Nn
)

using the Stirling approximation

lim
N→∞

(lnN !) = N lnN −N

lim
N→∞

ln(
1

n!

N !

(N − n)!Nn
) = 0

to show that it is

lim
N→∞

1

n!

N !

(N − n)!Nn
= 1

The power term expands

(1− 〈n〉
N

)N−n = 1− (N − n)(
〈n〉
N

)1 + +
1

2!
(N − n)(N − n− 1)(

〈n〉
N

)2 + · · ·

and taken to the limit becomes

1− 〈n〉+
1

2!
〈n〉2 − · · · = exp(−〈n〉)

Combining these two terms in the limit of large N yields the Poisson statistics for detecting
photons in a coherent beam

P (n; 〈n〉) =
〈n〉n
n!

exp(−〈n〉) (156)
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The variance of the Poisson distribution is

σ2
n = 〈(n− 〈n〉)2P (n; 〈n〉)〉 (157)

which can be shown for the Poisson distribution to be

σ2
n = 〈n〉 (158)

The standard deviation σ in n is therefore

σn =
√
〈n〉 (159)

This means that if we detect n photons there will be a Poisson distribution about that value
and in various trials we will measure a standard deviation of σn as intrinsic shot noise in the
signal. The resulting signal-to-noise ratio is

SNR = 〈n〉/
√
〈n〉 (160)

=
√
〈n〉 (161)

Poisson statistics applies to coherent light which has a perfectly stable flux lasting forever.
Light which has more noise is deemed super-Poissonian and includes thermal radiation and
partially coherent light. One contribution is a consequence of Bose-Einstein statistics of
photons. Sub-Poissonian light has less noise and would result from photons which are more
ordered in time, that is photons that do not have the uniformly random behavior that led
to the Poisson distribution. [38]

Signal-to-noise ratio

Fried [37] considered the Poisson distribution of both the photons and the photoelectrons
produced by a real detector. He demonstrated that if a detector had quantum efficiency η
and produced ηn photoelectrons for n incident photons, the signal-to-noise ratio measured
will be that of the detected photons. That is, he found that

SNR = s/σs (162)

= ηn/
√
ηn (163)

=
√
ηn (164)

His conclusion was that a Poisson distribution of the electrons produced in detection of light
by the photoelectric effect contained all the photon and photoelectron noise that should be
considered.

There are, however, additional sources of noise in the measurement process that should be
considered independently, and these have been examined in the astronomical literature where
their analysis is critical to understanding uncertainty in faint object and variability detection.
Howell [39] found that in 2-dimensional measurments the signal-to-noise ratio should include
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the shot noise we have found here and noise from the sky background, dark signal (which is
subtracted from the data) and read noise. The background and dark signals add as if they are
part of the signal to be measured in the determination of a total shot noise. The read noise,
which is attributed to electronics and is independent of the analog noise sources considered
by Fried, is added in an approximation to quadrature. The estimation of contributions from
methods of removing background from signal is well-studied and verified by experiments.
While the addition of these noise sources to photon statistics and the importance of sensor
read-noise are not as well studied, the procedure with modifications is now widely followed in
practice. An example is given by Collins et al. [40] for aperture photometry with a charged
coupled device where the total noise is estimated by

σtotal =

√
GF? + npix(1 + npix

nb
)(GFS + FD + F 2

R +G2σ2
f )

G
(165)

The “gain” in electrons/digital unit is G , F? is the net integrated digital counts in the
aperture, npix is the number of pixels in the aperture, nb is the number of pixels used for the
sky background subtraction, FS is the sky background counts per pixel in digital units, FD is
the total dark electrons (not counts) per pixel, FR is the read noise in electrons/pixel, and σf
is the standard deviation of a fractional count lost to digitization in comparison apertures.
Clearly one factor we need to understand better is the so-called gain, which provides the
calibration between the digital output of a sensor system and in the incident photons that
are detected (after allowing for quantum efficiency). Gain in this sense is given in units of
electrons/ADU where “ADU” means analog-to-digital unit. It is better thought of as inverse
gain, telling us how much signal we get for each photon that creates a photoelectron.

Photoelectron gain

In principle the determination of the gain parameter G described above for a detection of
light with a photoelectron device such as a CCD sensor could be found by illuminating the
sensor with a known flux, allowing for quantum efficiency, and comparing these data with
the actual measurements. There are obvious problems with doing this in practice, not the
least of which is the lack of suitable standard flux lamps with spectrally limited bandpasses,
and the separation of gain from quantum efficiency. Another method that is more practical
is to measure the noise in the detected signal.

The key to this procedure is that the noise is characteristic of the photons that are
detected as described by the ηn term in Fried’s Equation 164. This means that for a signal
s = ηn/G, the actual noise is still determined by

√
ηn and that the signal-to-noise ratio

must still be
s/σs =

√
ηn (166)

However, we do not measure the right hand side directly, but rather find s, from which

s/σs =
√
Gs (167)

s2/σ2
s = Gs (168)
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σ2
s/s = 1/G (169)

The right and side is independent of flux, and the left hand side is directly measurable for
any flux to which the detector will respond. That is

1/G = σ2
s/s (170)

Of course at low levels of illumination the right hand side is affected by read noise as well
as by other measurement issues such as described for aperture photometry above. If those
factors are constant and represented by σr in ADU, while σtotal is what we measure in total,
the actual signal noise is estimated from

σ2
s = σ2

total − σ2
r (171)

from which we have

1/G = σ2
total/s− σ2

r/s (172)
√

1/G ≈ σtotal/
√
s (173)

This leads to the expectation that simply looking at the asymptote as s is increased will
suppress the read noise term and provide a direct measurement of inverse gain 1/G from the
observed noise alone. Application of a model for all noise sources would of course improve
the extraction of G, and possibly other detector parameters, from the noise measured as a
function of signal. This is improved by performing the measurement over many examples,
either by varying S, or by repeatedly sampling the data. For example, a sensor with 1024×
1024 = 1 048 576 pixels could be exposed for 100 frames to determine σs. The global gain G
applies to every pixel, and each one is an independent measurement.

Figure 1 illustrates this for two commercial cameras. The Mako camera using a Sony

sensor shows
√

1/G = σ/
√
s → 0.35, from which we have G = (1./0.35)2 = 8.2, while

the GE680 camera with an On-Semi sensor
√

1/G = σ/
√
s → 0.65, from which we have

G = (1./0.65)2 = 2.4. Typically the manufacturers set the gain so that the full range of the
ADC matches the well depth of the sensor. These cameras operate with 12-bit digitization
for which the maximum signal is 4095. A gain of 8.2 implies that the full signal would
correspond to 4095 × 8.2 = 33579 photoelectrons, and provide a signal-to-noise ratio of
183:1. On the other hand, a gain of 2.4 would allow fewer photoelectrons and have a lower
limiting signal-to-noise of 99:1.

Related topics

These topics are being developed for additional treatment.

• Seeing and turbulence

• Time tagged photon correlation
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Figure 1: Noise measurement in a CCD camera. The Allied Vision Mako 234 camera uses
a low-noise Sony CMOS sensor and exhibits G ≈ 8.4 e/ADU, while the GE680 camera uses
an On-Semi sensor with G ≈ 2.4 e/ADU.


